

Unit - II				
2.A	Explain the Draft tube	4	Remembering	3
2.B	Define specific speed and derive an expression for specific speed of the turbine.	8	Understanding	3
2.C	233 litres of water per second are supplied to an inward flow reaction turbine. The head available is 11 m . The wheel vanes are radial at inlet and the inlet diameter is twice the outlet diameter. The velocity of flow is constant and equal to $1.83 \mathrm{~m} / \mathrm{s}$. The wheel makes 370 r.p.m. Find: (a) Guide vane angle, (b) Inlet and outlet diameter of the wheel,(c) The width of the wheel at inlet and exit. Neglect the thickness of the vanes Assume that the discharge is radial and there are no losses in the wheel. Take speed ratio $=0.7$.	8	Applying	3

$$
18 / 01 / 23 / \mathrm{MECH} / F M / 5 \text {-II }
$$

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

Class Test：II	Session：July－January 2022	Month：January	
Sem－ $5^{\text {th }}$ Sem	Subject：Solid Mechanics		
Code - C037512（037）	Time Allowed： 2 hrs	Max Marks： 40	

Note：－Attempt all question．Parts（a）are compulsory of each question．Solve any two parts from（b），（c）and（d）of each question．

Q．No	Questions	Marks	Levels of Bloom＇s taxonomy	CO

Unit-I

1．A	Define pressure vessels or shells？Write different stresses act upon them with expression．	4	Remembering	CO1
1．B	Show that the volumetric strain of a cylindrical shell is the sum of longitudinal strain and twice of hoop strain．Also derive the volumetric strain of a cylindrical shell．	8	Creating	CO2
1．C	A thin cylindrical shell has the following dimensions：length 1.5 m ，external diameter 300 mm ，thickness of the metal 10 mm ，it is filled with liquid at atmospheric pressure．Determine the value of the pressure exerted by the liquid if additional $20000 \mathrm{~cm}^{3}$ of water is pumped into the cylinder．Also calculate the longitudinal and hoop stress induced in the cylinder wall．Take $\mathrm{E}=200 \mathrm{GPa}$ and Poisson＇s ratio 0．33．	8	Creating	CO1
1．D	Wall thickness of a cylindrical shell of 800 mm internal diameter and 2 meter long is 10 mm ．If the shell is subjected to an internal pressure of 1.5 MPa ，find the following： （i）The maximum intensity of shear stress induced． （ii）The change in dimensions of the shell． Take E $=200 \mathrm{GPa}$ $v=0.3$	8	Creating	CO 2

Unit－II		Remembering	CO2	
$2 . A$	Write equivalent length for different end conditions of column and define shear centre．	$\mathbf{4}$		
	A solid round tube 3 m long and 5 cm in diameter is used as a column with both ends hinge．Find the collapsing load．What will be the crippling load if： （i）both the ends are built in（fixed） （ii）one end is built in and one end is free （ii）one end is built in and other is hinged Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	$\mathbf{8}$	Creating	CO1

$$
1910123 / \mathrm{mech} / 5 . \mathrm{I} / 5 \mathrm{H}
$$

DEPARTMENT OF MECHANICAL ENGINEERING

Class Test - II	Session- July -Dec 2022	Month- Jan 2023
Sem- 5	Subject- Operation Research	
Code -C037531(037)	Time Allowed: 2 hrs.	Max Marks: 40

Note: - Each Question consist of three part .part a is compulsory. Answer any one from part b and part c.

$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$	Questions	Marks	Levels of Bloom's taxono my	CO
	Unit - IV			
A	Explain the rules of network construction.	4	U	CO4
B	1. Tasks A, B, C ...H, I constitute a project. The precedence relationship are $A<D ; A<E ; B<F ; D<F ; C<G ; C<H ; F<I ; G<I$ The project time, in days, of each task is as follow: (a) Draw a network to represent the project the project (b) Identify the critical path. (c) Compute the earliest start time(EST), earliest finish time (EFT), latest start time (LST) and latest finish time (LFT) for each event. (d) Compute the total float.	16	A	CO4
C	The time estimates (in weeks) for the activity of PERT network are given below: (a) Draw the project network and identify all paths through it. (b) Determine the expected project length. (c) Calculate the standard deviation \& variance of the project length. (d) What is the probability that the project will be completed (i) At least 4 weeks earlier than expected time? (ii) No more than 4 weeks later than expected time? (e) If the project due date is 19 weeks, what is the probability of not meeting the due date? (a) What should be the scheduled completion time for the probability of completion to be 90% ?	16	A	CO 4

Unit - V

$$
19 / 01 / 2 \mathrm{~J} / \mathrm{m} \in \mathrm{CH} / O R / 5-11
$$

DEPARTMENT OF MECHANICAL ENGINEERING		
Class Test: II	Session: July-December, 2022	Month: January, 2023
Semester 5th	Subject: Dynamics of Machines	
Code: C037514(037)	Time Allowed: 2 Hours	Max Marks: 40

Note: - Part A of Questions 1 and 2 is compulsory, from other parts B, C and D of Questions 1 and 2, attempt any two parts.
Ignore the columns of Level of Bloom's taxonomy and CO.

$\underset{\text { Q. }}{\text { Q. }}$	Questions	Marks	Levels of Bloom's taxonomy	CO
Question - 1				
1.A	Analyze the difference between effects of Gyroscopic Couple during Steering and Pitching of a ship during sailing.	4	Analyze	3
1.B	An aeroplane flying at $240 \mathrm{~km} / \mathrm{hr}$ turns towards left and completes a quarter circle of 60 m radius. The mass of rotary parts of engine and propeller of plane amounts to 450 kg with a radius of gyration of 320 mm . Engine speed is 2000 rpm clockwise when viewed from the rear. Calculate (i) Gyroscopic couple on aircraft and state its effect. In what way is the effect changed when the aeroplane turns towards right. If the engine rotates in clockwise direction when viewed from front (nose) and aeroplane turns (a) left and then (b) right.	8	Apply	3
1.C	A disc with radius of gyration 60 mm and a mass of 4 kg is mounted centrally on a horizontal axle of length 80 mm between bearings. It spins about the axle at 800 rpm counterclockwise when viewed from right hand side bearing. Axle precesses about vertical axis at 50 rpm in clockwise direction when viewed from above. Calculate the resultant reaction at each bearing due to mass and gyroscopic effect.	8	Apply	3
1.D	A rail car has a total mass of 4000 kg . There are two axles, each of which together with its wheels and gearing has a total mass moment of inertia $30 \mathrm{kgm}^{2}$. Centre distance between the two wheels on an axle is 1.5 m and each wheel is 46.5 cm radius. Each axle is driven by a motor, speed ratio is $1: 3$. Each motor with its gear has a mass moment of inertia of $15 \mathrm{kgm}^{2}$ and runs in direction opposite to that of axle. The centre of gravity of car is 105 cm above the rails. Determine the limiting speed of this car when rounding a curve of 300 m radius such that no wheel leaves the rail.	8	Apply	3

$$
\text { Question - } 2
$$

$$
20101 / 23 / m \in C H / D O N / 5=I
$$

