1	SHRI SHANKARAC	HARYA INSTITUTE OF PROFESSIONAL MANAGEM	ENT AND T	ECHNOLOGY	
		DEPARTMENT OF MECHANICAL ENGINEER	ING		
C	lass Test – II	Session- 2021-22	Mo	nth- Jan	
	Sem- 5 th	Subject- ICE			
Code	e - C037511(037)	Time Allowed: 2 hrs	Max	Marks: 40	
Note: -					
Q. No		Questions	Marks	Levels of Bloom's taxonomy	со
		Unit – I			
1.A	What is petrol inj	ection? What are its advantages and disadvantages	4	Remembering	CO2
1.B	Discuss the air full load to full load?	8	Remembering	CO3	
1.C	What do you mea lip? What are the	8	Remembering	CO3	
1.D	c _{da} =0.85. the fue the fuel nozzle is a) A:F ratio neglected b) A:F ratio c) The mini	for pressure drop of 0.007bar when nozzle lip is	8 .	Applying	CO3

)		Unit – II			
	2.A	Describe dry sump and wet sump lubrication system for I.C engines. What is antifreeze mixture for coolants and where it is used?	4	Remembering	CO4
	2.B	What do you understand by ignition? Describe the battery ignition system with the help of sketch?	8	Remembering	CO4
	2.C	Define wet sump lubrication. What are their varieties? Explain anyone with suitable figure?	8	Remembering	CO4
	2.D	Why cooling of an I.C engine is necessary? Discuss the disadvantages of overcooling? Describe with a sketch thermostatically controlled forced circulation system?	8	Applying	CO4

	SHRI SHANKARAC	HARYA INSTITUTE OF PROFESSIONAL MANAGEN	IENT AND	TECHNOLOG	Y
		DEPARTMENT OF MECHANICAL ENGINEER	UNG		
(Class Test – II	Mon	th- January		
	Sem- 5 th	Subject- Fluid Machines			4
	e :- C037512(037)	Time Allowed: 2hr.	Max	Marks: 40	,
Note: 2. Solv	- 1.first Question (A) fi e any two from B,C,D	om both unit are compulsory. of each unit.			
Q. No		Marks	Levels of Bloom's taxonomy	со	
		Unit – I			
1.A	Define Head and e	4	Remembering	2	
1.B	A Pelton wheel is at 200 r.p.m. The The velocity of the overall efficiency = 0.98.	8	Applying	2	
1.C	Determine the po Pelton wheel whic head on the turbin 0.03 m/s. The sid velocity= 0.975.	8	Applying	2	
1.D	Derive an express turbine.	8	Understanding	2	

	Unit – 11	all of		
2.A	Explain the Draft tube	4	Remembering	3
2.B	Define specific speed and derive an expression for specific speed of the turbine.	8	Understanding	3
2.C	233 litres of water per second are supplied to an inward flow reaction turbine. The head available is 11 m. The wheel vanes are radial at inlet and the inlet diameter is twice the outlet diameter. The velocity of flow is constant and equal to 1.83 m/s. The wheel makes 370 r.p.m. Find: (a) Guide vane angle, (b) Inlet and outlet diameter of the wheel,(c) The width of the wheel at inlet and exit. Neglect the thickness of the vanes Assume that the discharge is radial and there are no losses in the wheel. Take speed ratio = 0.7.	8	Applying	3

A Kaplan turbine runner is to be designed to develop 9100 kW. The net available head is 5.6 m. If the speed ratio= 2.09, flow ratio = 8 Applying 3 2.D 0.68. overall efficiency 86% and the diameter of the boss is 1/3 the diameter of the runner. Find the diameter of the runner, its speed and the specific speed of the turbine. 18/01/23/MECH/FM/S-J

es sub r.p.m. (ind) (a) builde varie angle, (a) intes and outle reter of the wheel (c) The wadth of the wheel at intel and exilect the thickness of the venes Assume that the discharge (3) and there are no incres in the wheel. Take errord catter of t

	SHRI SHANKARAC	HARYA INSTITUTE OF PROFESSIONAL MANAGEME	ENT AND T	ECHNOLOGY	
		DEPARTMENT OF MECHANICAL ENGINEERI	NG		
C	Class Test: II	Session: July-January 2022	Mont	h: January	
S	em- 5 th Sem	Subject: Solid Mechanics			
Code	- C037512(037)	Time Allowed: 2 hrs		Marks: 40	*
Note: -	Attempt all question. F	arts (a) are compulsory of each question. Solve any two parts f	rom (b), (c) :	and (d) of each qu	uestion.
Q. No		Marks	Levels of Bloom's taxonomy	СО	
		Unit – I			
1.A	Define pressure ves with expression.	4	Remembering	CO1	
1.B	Show that the vo longitudinal strain strain of a cylindric	8	Creating	CO2	
1.C	A thin cylindrical s diameter 300 mm, atmospheric pressu liquid if additional calculate the longit E = 200 GPa and P	8	Creating	C01	
1.D	Wall thickness of meter long is 10 m MPa, find the follo (i) The maximum i (ii) The change in o Take E=200 GPa v= 0.3	8	Creating	CO2	

	· Unit – II			
2.A	Write equivalent length for different end conditions of column and define shear centre.	4	Remembering	CO2
2.B	 A solid round tube 3 m long and 5 cm in diameter is used as a column with both ends hinge. Find the collapsing load. What will be the crippling load if: (i) both the ends are built in (fixed) (ii) one end is built in and one end is free (ii) one end is built in and other is hinged Take E = 2 × 10⁵ N/mm². 	8	Creating	CO1

2.C	Find the Eulers crushing load for a hollow cylindrical cast iron, 15 cm external dimeter and 2 cm thick, if it is 6 m long and hinged at both ends, $E = 80$ GPa. Compare this load with the crushing load given by Rankine's formula; using yield stress 550 MPa and Rankine constant 1/1600. For what length of strut of this cross section done Euler formula ceases to apply.	8	Creating	СОЗ
2.D	A column is made up of two rolled steel joists of I-section; 16 cm x 8cm x lcm thick with plate 20 cm x 1 cm riveted with flanges one each on the top and on the bottom. The edges of the plates being flush with the outside edges of joists' flanges. Determine, by Rankine's formula the safe load the column of 4 m length, with both ends fixed, can carry with factor of safety 3. Take; a= 1/7500, and σ_c = 320MN /m ²	8	Creating	CO2

19/01/23/MECH/5-J/5M

SH	RI SHANKARACH	A share a share a share	and the second second					CHNOLOG	Y
		DEPART			NICAL ENG	INEERING		1	
Cl	ass Test – II		Sessi	on- July -Dec	2022		Month-	Jan 2023	
a para	Sem- 5	Subject-	Operati	ion Research					
	-C037531(037)			Allowed: 2				larks: 40	-
Note: -	Each Question consis	t of three pai	rt .part a	is compulsory	Answer any or	e from part	b and part o		
Q. No			Ques	tions			Marks	Levels of Bloom's taxono my	
				Unit –	IV				
A	Explain the rules of	f network cor	nstructior	1.			4	U	- 1
	1. Tasks A, I	B, CH, I co	onstitute	a project. The p	recedence relat	tionship			
	are A <d; a<<="" td=""><td>E; B<f; d<f<="" td=""><td>; C<g; c<="" td=""><td>C<h;< b=""> F<i; g<i<="" td=""><td></td><td></td><td></td><td></td><td></td></i;></h;<></td></g;></td></f;></td></d;>	E; B <f; d<f<="" td=""><td>; C<g; c<="" td=""><td>C<h;< b=""> F<i; g<i<="" td=""><td></td><td></td><td></td><td></td><td></td></i;></h;<></td></g;></td></f;>	; C <g; c<="" td=""><td>C<h;< b=""> F<i; g<i<="" td=""><td></td><td></td><td></td><td></td><td></td></i;></h;<></td></g;>	C <h;< b=""> F<i; g<i<="" td=""><td></td><td></td><td></td><td></td><td></td></i;></h;<>					
	The project time, i Task A	in days, of ea B C	ch task is D	E F	G H	I			
	Time 8	10 8	10	16 17	18 14	9	16	A	
В	(a) Draw a no					- 1 			
	 (b) Identify t (c) Compute start time (d) Compute 	the critical pa the earliest s (LST) and the total floa	th. tart time(latest fini t.	EST), earliest ish time (LFT)	finish time (EF for each event.				
1.1	The time estimates	s (in weeks) f	for the ac	tivity of PERT	network are gr	ven below:			
		ivity -2	to 1	tm	tp ,				
		-3	1	4	7				
		-4	2	2	8				
		3-5	2	5	.14				
	3			5	8				
• •	3	I-6	2	6	1 15	_	16	A	
C	3 4 5	5-6	3	6 identify all pat	1				

	5.					·		a a L	к				
						Uni	t – V						
Α	What is gar	ne theory	and dis	scuss a	bout saddle	e point.		-		4	U	CO5	
	Solve the fo	llowing	game b	y using	the princi	ple of d	lomina	ance:					1
			i	ii	iii	iv	v	vi					
		1	4	2	0	2	1	. 1			2		
В		2	4	3	1	3	2	2	-	16	A	CO5	Q.
		3	4	3	7	-5	1	2			×.		
		4	4	3	4	-1	2	2			-		
	Solve the fo	ollowing	game by	y using	the princip	ole of d	omina	ince:	7				1
				B1	B2	B	3	B4			2 H		
	2. 	A1		35	65	2	5	5		z			
C J	Б	A2		30	20	1.	5	0		16	A	CO5	a.
		A3		40	50	C)	10			3	за 2	
		A4		55	60	B	0	15					Ĺ

19/01/23/DECH/OR/J-II

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY

	Salar A	TECHNOLOGY				
	D	EPARTMENT OF MECHANICAL ENGINI	EERING			
С	lass Test: II	Month: J	January, 202	3		
	emester 5th	Subject: Dynamics of Machines				
Code: C037514(037)Time Allowed: 2 HoursMax Marks: 40						
2, atte	empt any two part	tions 1 and 2 is compulsory, from other parts 1 s. Level of Bloom's taxonomy and CO.	3, C and D		1 an	
Q. No		Questions	Marks	Levels of Bloom's taxonomy	CO	
		Question – 1	-	-		
1.A		ference between effects of Gyroscopic Couple g and Pitching of a ship during sailing.	e 4	Analyze	3	
1.B	completes a qua parts of engine a radius of gy clockwise whe Gyroscopic cou is the effect cha If the engine ro	flying at 240km/hr turns towards left and arter circle of 60m radius. The mass of rotary and propeller of plane amounts to 450kg with ration of 320mm. Engine speed is 2000rpm en viewed from the rear. Calculate (i ple on aircraft and state its effect. In what way nged when the aeroplane turns towards right tates in clockwise direction when viewed from I aeroplane turns (a) left and then (b) right.		Apply	3	
1.C	mounted centr between bearin counterclockwin Axle precesses direction when	dius of gyration 60mm and a mass of 4kg is ally on a horizontal axle of length 80mm ngs. It spins about the axle at 800rpm se when viewed from right hand side bearing about vertical axis at 50 rpm in clockwise viewed from above. Calculate the resultan bearing due to mass and gyroscopic effect.	1 1 - 8 e	Apply	3	
1.D	each of which to mass moment o two wheels on a Each axle is dri with its gear has in direction opp car is 105cm ab	a total mass of 4000kg. There are two axless ogether with its wheels and gearing has a tota of inertia 30kgm ² . Centre distance between the n axle is 1.5m and each wheel is 46.5cm radius ven by a motor, speed ratio is 1:3. Each motor s a mass moment of inertia of 15kgm ² and run posite to that of axle. The centre of gravity o pove the rails. Determine the limiting speed o counding a curve of 300m radius such that no e rail.	1 e r s f f	Apply	3	

P.T.O

	Question – 2				8
2.A	Analyze the reason of free vibration in case of elastic bodies.	4	Analyze	4	
2.B	Derive with suitable diagram the expressions for piston effort, force acting along the connecting rod, thrust on the sides of cylinder walls in a piston cylinder mechanism neglecting the weight of the connecting rod.	8	Apply	5	
2.C	Following data relate to a shaft held in long bearings: length of shaft=1.2m, diameter of shaft=14mm, mass of rotor at midpoint=16kg, eccentricity=0.4mm, young's modulus of elasticity=200GPa, permissible stress in shaft=70x10 ⁶ N/m ² . Find critical speed of shaft and the range of speed over which it is unsafe to run the shaft. Assume shaft to be massless.	8	Apply	4	
2.D	Derive an expression for natural frequency of free transverse vibrations of shaft subjected to a number of points loads and uniformly distributed load by Dunkerley's method.	8	Apply	4	Q

20/01/25/MECH/DOM/5-I